Announcements

1) HW I Supplement due tomorrow
2) Hw 2 up due next week
3) Ford Pay -

Wednesday
12:45-2 Kochoff
(registration @ は)
3:45-5 cob Michigan Room East

Back to Example:

$$
\frac{d y}{d x}=x y^{2}-x+y^{2}-1
$$

if $y(u)=1$.
We factored

$$
\begin{aligned}
x y^{2}-x+y^{2}-1 & =x\left(y^{2}-1\right)+\left(y^{2}-1\right) \\
& =(x+1)\left(y^{2}-1\right)
\end{aligned}
$$

Rewrite

$$
\frac{d y}{d x}=(x+1)\left(y^{2}-1\right)
$$

divide both sides by $y^{2}-1$ to get

$$
\frac{1}{y^{2}-1} \frac{d y}{d x}=x+1
$$

Ignore $\frac{d y}{d x}$, integrate
left hand side wit y, right hand side wit x.

$$
\begin{aligned}
\int \frac{1}{y^{2}-1} d y & =\int(x+1) d x \\
& =\frac{x^{2}}{2}+x+C
\end{aligned}
$$

$\int \frac{1}{y^{2}-1} d y$ use partial
fractions!

$$
\begin{aligned}
\frac{1}{y^{2}-1} & =\frac{1}{(y-1)(y+1)} \\
& =\frac{1 / 2}{y-1}+\frac{-1 / 2}{y+1}
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{1}{y^{2}-1} d y \\
= & \frac{1}{2} \int\left(\frac{1}{y-1}-\frac{1}{y+1}\right) d y \\
= & \frac{1}{2}(\ln |y-1|-\ln |y+1|) \\
= & \frac{1}{2} \ln \frac{|y-1|}{|y+1|} \\
= & \frac{x^{2}}{2}+x+C
\end{aligned}
$$

Solve for Cusing $y(4)=3$

$$
\begin{aligned}
\frac{1}{2} & \ln \left(\frac{2}{4}\right)=8+4+c \\
C & =\frac{1}{2} \ln (1 / 2)-12 \\
& =\frac{1}{2}(\ln (1)-\ln (2))-12 \\
& =-\frac{\ln (2)}{2}-12 \\
& =-\ln \sqrt{2}-12
\end{aligned}
$$

Now see if we can solve for y ! Leave C in.

$$
\begin{aligned}
& \frac{1}{2} \ln \left|\frac{y-1}{y+1}\right|=\frac{x^{2}}{2}+x+C \\
& \ln \left|\frac{y-1}{y+1}\right|=x^{2}+2 x+2 C
\end{aligned}
$$

Exponentiate:

$$
\begin{aligned}
& \text { Exponentiate: } \\
& \qquad\left|\frac{y-1}{y+1}\right|=e^{x^{2}+2 x+2 c}
\end{aligned}
$$

Assume $y \geq 1$. Then

$$
\left|\frac{y-1}{y+1}\right|=\frac{y-1}{y+1}
$$

$$
\begin{aligned}
& \frac{y-1}{y+1}=e^{x^{2}+2 x+2 c} \\
& (y-1)=(y+1) e^{x^{2}+2 x+2 c} \\
& y-y e^{x^{2}+2 x+2 c}=e^{x^{2}+2 x+2 c}+1 \\
& y\left(1-e^{x^{2}+2 x+2 c}\right)=e^{x^{2}+2 x+2 c}+1 \\
& \text { so } \\
& y=\left(1+e^{x^{2}+2 x+2 c}\right) /\left(1-e^{x^{2}+2 x+2 c}\right)
\end{aligned}
$$

Since $C=-\ln \sqrt{2}-12$,

$$
y=\frac{1+e^{x^{2}+2 x-2(\ln \sqrt{2}-12)}}{1-e^{x^{2}+2 x-2(\ln \sqrt{2}-12)}}
$$

Example 1: (The larine problem)
Suppose a brine containing .3 kg of salt per liter runs into a tank initially filled with 400 L of water containing 2 kg of salt. If the brine enters at $10 \mathrm{~m} / \mathrm{min}$, the mixture is kept uniform by stirring, and \rightarrow
the mixture flows out at the same rate, how much salt (in Kg) is in the tank after 10 min ?

Label amount of salt left in $\tan k$ at time t by
$S(t)$. Since the tank starts with 2 k g of salt in it, $s(0)=2$.

Make a differential equation:

$$
\begin{aligned}
\frac{d s}{d t} & =(\text { rate in })-(\text { rate out }) \\
\text { rate in } & =(.3 \mathrm{~kg} / \mathrm{L})(10 \mathrm{~L} / \mathrm{min}) \\
& =3 \mathrm{~kg} / \mathrm{min}
\end{aligned}
$$

since mixture flows in at $10 \% / \mathrm{min}$, has. $3^{49} / \mathrm{L}$ of salt.

$$
\begin{aligned}
\text { cate out } & =\left(\frac{5(t)}{4001}\right) \cdot(10 \mathrm{~L} / \mathrm{min}) \\
& =\frac{5(t)}{40} \mathrm{~kg} / \mathrm{min}
\end{aligned}
$$

Since mixture exits at $10 \% \mathrm{~min}$, and there are $S(t) / 400 \mathrm{~kg} / \mathrm{L}$ of salt.
Differential equation:

$$
\frac{d s}{d t}=3^{4 s} / \mathrm{min}-\frac{s(t)}{40} \mathrm{ks} / \mathrm{min}
$$

Solve!. Divide by

$$
\begin{gathered}
3-\frac{s(t)}{40} \\
\frac{1}{3-\frac{s(t)}{40}} \frac{d s}{d t}=1 \\
\frac{1}{3-s / 40}=1
\end{gathered}
$$

Integrate chs writ t, las wit s.

$$
\begin{aligned}
\left.\underbrace{\left.\int \frac{1}{3-s / 40} \right\rvert\, 3-s / 40}_{-40} \right\rvert\, & =t+C
\end{aligned}
$$

Solve for C using $s(0)=2$.

$$
\begin{aligned}
& -40 \ln |3-1 / 20|=C \\
& C=-40 \ln \left(\frac{59}{20}\right) .
\end{aligned}
$$

Solve for S :

$$
\begin{aligned}
& \text { Solve for } s: \begin{array}{l}
\ln |3-s / 40|=\frac{(t+c)}{-40} \\
|3-s / 40|=e^{-\frac{t-c}{40}} \\
3-5 / 40=e^{-t / 40} e^{-c / 40} \\
S=120-40 e^{-t / 40-c / 40} e
\end{array}
\end{aligned}
$$

Since $C=-40 \ln (59 / 20)$

$$
S=120-118 e^{-t / 40}
$$

Final answer:

